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Multiple scattering by two impenetrable cylinders: Semiclassical theory

P. Gabrielli* and M. Mercier-Finidori†
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Scattering of waves and particles by two identical, impenetrable, and parallel cylinders is studied here. The
characteristic determinant of the scattering matrices is expanded in terms of simple traces that are semiclassi-
cally evaluated in order to extract the periodic orbits. Generalized formulas are derived for all the contributions
that are purely geometrical or composite~including a creeping section!. All the scattering resonances, inter-
preted as periodic orbits, are in excellent agreement with the exact results. The scalar problem of scattering by
two impenetrable cylinders can be considered as a canonical problem.
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I. INTRODUCTION

Scattering problems by open systems have been ex
sively investigated in many fields of physics~for instance in
quantum mechanics, electromagnetism, optics, and ac
tics!. Many semiclassical methods have been carried ou
the past to study such problems. A very powerful one is
geometrical theory of diffraction~GTD! developed by Keller
@1# in order to describe the evolution of waves in terms
rays. Another useful method is the semiclassical trace
mula introduced by Gutzwiller@2,3# and extended by othe
authors@4–8#, using cycle expansions of zeta functions
quantum Fredholm determinants. Afterwards, the GTD
been incorporated by Vattay, Wirzba, Rosenqvist, a
Whelan @9–13# in the Gutzwiller trace formula in order to
take account of the diffraction effects due to creeping wav
This periodic orbit theory of diffraction improves previou
results, but errors still exist@11#. Furthermore, a nonscala
example in elastodynamics has been investigated by the
thors of Ref.@14#.

In this paper, we propose a semiclassical approach to
tract and interpret all the scattering resonances of the
impenetrable cylinders scattering problem. The character
determinant of the scattering matrices involved in the pr
lem is expanded in terms of simple traces which are ev
ated using the Watson transformation@15#. Generalized for-
mulas are obtained for all the contributions that are pur
geometrical or composite, i.e., with a geometrical part~one
or more reflections! and a diffractive part~creeping sections!.
It should be noted that Wirzba gives a semiclassical appr
mation and some generalized formulas interpreted in te
of periodic orbits for any geometry of a finite number
nonoverlapping disks@8#, meanwhile we provide here a mor
detailed analysis for the particular two-dimensional scat
ing problem by two impenetrable cylinders.

We consider two infinite, identical, impenetrable, and p
allel cylinders of radiusa with a center-to-center distanced.
In previous papers@16–18#, an exact formalism has bee
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developed by emphasizing the role of the symmetries of
scatterer. The two-cylinder system has aC2v symmetry@19#
with four one-dimensional irreducible representations
beled A1 , A2 , B1, and B2. The scattering resonances are t
complex zeros of the characteristic determinants of the
lowing matrices:

M (a)5I1A(a), ~1!

with a5A1, A2 , B1, or B2 and where

Aqp
(A1)

52
gp

4
~21!q@Sq~ka!21#

3@Hq2p
(1) ~kd!1~21!pHq1p

(1) ~kd!#, ~2!

Aqp
(A2)

52
1

2
~21!q@Sq~ka!21#

3@Hq2p
(1) ~kd!2~21!pHq1p

(1) ~kd!#, ~3!

Aqp
(B1)

51
1

2
~21!q@Sq~ka!21#

3@Hq2p
(1) ~kd!2~21!pHq1p

(1) ~kd!#, ~4!

Aqp
(B2)

51
gp

4
~21!q@Sq~ka!21#

3@Hq2p
(1) ~kd!1~21!pHq1p

(1) ~kd!#. ~5!

Here gp denotes the Neumann factor given byg051 and
gp52 (p.0). The vectorSq(ka) reads as follows for the
particular boundary conditions~BC!,

~i! Dirichlet BC in quantum mechanics, in acoustics, a
in electromagnetism~particle scattering by hard disk
@6–13,18#, ultrasonic wave scattering by soft disks, and m
crowave scattering by metallic conductors@20#!,

Sq~ka!52
Hq

(2)~ka!

Hq
(1)~ka!

. ~6!

~ii ! Neumann BC in acoustics~ultrasonic wave scattering
by hard disks!,
©2002 The American Physical Society29-1
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Sq~ka!52
Hq

(2)8~ka!

Hq
(1)8~ka!

. ~7!

~iii ! Impedance BC in electromagnetism@transverse mag
netic~TM! and transverse electric~TE! scattering by conduc
tors with a given constant impedancez @21##,

Sq~ka!52
zHq

(2)8~ka!1 iH q
(2)~ka!

zHq
(1)8~ka!1 iH q

(1)~ka!
. ~8!

In connection with the above relation, it should be noted t
the impedance BC are taken into account with a unit nor
vector pointing in the direction of the exterior medium.

The scattering resonances of the two-cylinder system
the zeros of the characteristic determinants detM (a) with a
5A1, A2 , B1, or B2 ~see Refs.@6,18#! in the complexka
plane and they are classified according to the four irreduc
representations ofC2v . We propose here a semiclassical a
proach based on the cumulant expansion of the matrices~1!
involved in the problem, the Watson transformation, t
method of steepest descent, and high-frequency approx
tions @6,7#. Each term of the cumulant expansion is inte
preted in terms of periodic orbits by applying once or seve
times the usual Watson transformation and by solving m
tiple integrals over complex variables. Our method provid
all the periodic orbits for the considered scattering proble
Therefore, we can postulate that, in the scalar case, the
tering of a point particle—or in analogy the scattering of
~electromagnetic or acoustic! wave—from two identical, im-
penetrable and parallel cylinders is a canonical problem.

In Sec. II, we extract all the periodic orbits of the tw
cylinder system for the first three orders of the cumul
expansion in case of the A1 representation. A generalizatio
for any truncation order of the cumulant expansion and
the four irreducible representations of theC2v symmetry
group is given in Sec. III. Furthermore, all the scatteri
resonances are expressed by generalized formulas. Se
IV is devoted to the physical interpretation of the period
orbits. The exact quantum-mechanical resonance data
compared to the predictions of our semiclassical approa

II. SEMICLASSICAL THEORY

The aim of this section is to extract all the periodic orb
of the two-cylinder scatterer in a natural way using the W
son transformation@15#, the method of steepest desce
@22,23#, the residue theorem@24#, and high-frequency ap
proximations. We present here our method for the A1 repre-
sentation. It will be shown in Sec. III that the results a
easily generalized to the three other representations A2 , B1 ,
B2 of C2v . The A1 scattering resonances are the comp
solutions of the characteristic determinant~see Ref.@6#!,

detM (A1)50. ~9!

From now on, to simplify the notation, the A1 dependence is
suppressed. We use the cumulant expansion@8#
04662
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detM5det~ I1A!5 (
q50

1`

Qq~A!, ~10!

with

Q0~A!51, ~11!

Qq~A!5
1

q (
m51

q

~21!m11Qq2m~A!Tr~Am! for q>1.

~12!

Introducing the notations

fq5Tr~Aq! for q>1, ~13!

the first three cumulants read

Q1~A!5f1 , ~14!

Q2~A!52
1

2
@ f22~ f1!2#, ~15!

Q3~A!5
1

3 F f32
3

2
f1f21

1

2
~ f1!3G . ~16!

In what follows, we extract all the periodic orbits from th
first three terms of the cumulant expansion.

A. The first term of the cumulant expansion

Using Eqs.~2! and ~13!, the first-order cumulant~14!
reads

f15 (
p50

`

App52
1

4 (
p50

`

gp~21!p@Sp~ka!21#

3@H0
(1)~kd!1~21!pH2p

(1)~kd!#. ~17!

We apply the usual Watson transformation@15# to convert
the previous partial wave series into a contour integral,

(
p50

1`

~21!pFp~ka!5
i

2EC

F~n,ka!

sin~pn!
dn, ~18!

therefore

f152
i

4EC

Sn~ka!21

sin~pn!
@H0

(1)~kd!1eipnH2n
(1)~kd!#dn,

~19!

whereSn(ka) andH2n
(1)(kd) are the analytic functions in the

complexn plane, interpolatingSp(ka) andH2p
(1)(kd). In Eq.

~19!, the contourC encircles the real positive axis in th
clockwise sense~see Fig. 24 of Appendix A!. It should be
noted that the integration takes into account the Cauchy p
ciple value at the origin. In what follows, theka dependence
of theSn function will be suppressed so as to keep the no
tion simple, thereforeSn[Sn(ka). According to Appendix
A, the deformation of the contourC permits one to extrac
9-2
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from Eq. ~19! a purely geometrical contributionfg,1 and a
purely diffractive contributionfdif,1 ,

f15fg,11fdif,1 , ~20!

with

fg,152
1

4EG
Sne2 ipn@H0

(1)~kd!1eipnH2n
(1)~kd!#dn,

~21!

fdif,152 ip(
nn

r nn

eipnn

12e2ipnn

3@H0
(1)~kd!1eipnnH2nn

(1) ~kd!#. ~22!

Herenn denotes the poles of theSn function in the complex
n plane andr nn

is the residue ofSn at the polesn5nn . It

should be noted that the notationfdif,q refers to contributions
including a creeping section. Forq51, fdif,1 corresponds to a
purely diffractive contribution, whereas forq.1, fdif,q
stands for composite contributions~a geometrical part and
diffractive one!.

1. Purely diffractive contribution

The residue-series contribution~22! reads

fdif,15fdif,1
I 1fdif,1

II , ~23!

with

fdif,1
I 52 ip(

nn

r nn

exp~ ipnn!

12exp~2ipnn!
H0

(1)~kd!, ~24!

fdif,1
II 52 ip(

nn

r nn

exp~2ipnn!

12exp~2ipnn!
H2nn

(1) ~kd!. ~25!

Replacing H0
(1)(kd) and H2nn

(1) (kd) by their Debye asymptotic

expansions~32! and using the approximation

nn.ka, ~26!

which is valid for large values ofka, we obtain

fdif,1
I 52A2ip

kd
exp~ ikd!(

nn

r nn

exp~ ipnn!

12exp~2ipnn!
,

~27!

fdif,1
II 52A 2ip

kAd224a2
exp@ ikAd224a2#

3(
nn

r nn

expF innS 2p22 arccos
2a

d
D G

12exp~2ipnn!
. ~28!
04662
2. Purely geometrical contribution

The purely geometrical contribution~21! can be written as

fg,15fg,1
I 1fg,1

II , ~29!

with

fg,1
I 52

1

4EG
Sne2 ipnH0

(1)~kd!dn, ~30!

fg,1
II 52

1

4EG
SnH2n

(1)~kd!dn. ~31!

Each integral is approximated, in the high-frequency lim
ka@1 andkd@1, using the method of steepest descent@22#.
We insert the Debye asymptotic expansions for the Han
functions@25#

Hn
(1,2)~z!;A 2

6 ipAz22n2

3expF6 i SAz22n22n arccos
n

z
D G for uzu.n,

~32!

and theSn(x) function reads

Sn~x!;2 iR~n,x!expF22i SAx22n22n arccos
n

xD G .
~33!

We have introduced in Eq.~33! the reflection coefficient
R(n,x) which is defined according to the boundary conditi
~BC!

R~n,x!→11 ~Dirichlet BC!, ~34!

R~n,x!→21 ~Neumann BC!, ~35!

R~n,x!→2
zAx22n22x

zAx22n21x
~ impedance BC!, ~36!

with x5ka. By using the steepest descent method, the in
grals ~30! and ~31! asymptotically reduce to

fg,1
I 5 1

2 R~0,ka!A a

2d
exp@ ik~d22a!#, ~37!

fg,1
II 5 1

2 R~0,ka!A a

2~d22a!
exp@ ik~d22a!#. ~38!

Finally, the first cumulant is asymptotically approximate
by

Q1~A!5fg,11fdif,1 , ~39!

with
9-3
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fg,15fg,1
I 1fg,1

II ,

fdif,15fdif,1
I 1fdif,1

II .

The previous contributions are given by Eqs.~27!, ~28!, ~37!,
and ~38!. In this part, four contributions~two purely geo-
metrical and two purely diffractive! have been extracte
from Q1(A). They will be interpreted in terms of periodi
paths in Sec. IV.

B. The second term of the cumulant expansion

We focus in this part on the second cumulantQ2(A) de-
fined by Eq.~15!. The term (f1)2 is directly deduced from the
first-order cumulant~20!,

~ f1!25~ fg,11fdif,1!2, ~40!

whereas we have to evaluate the termf2 given by Eq.~13!,

f25Tr~A2!5 (
p50

`

(
q50

`

ApqAqp . ~41!

The expressions of the matrix elements~2! are inserted in the
previous relation, thusf2 reads

f25 (
p50

`

(
q50

`
gq

4
~21!p~Sp21!

gp

4
~21!q~Sq21!X~p,q!,

~42!

where

X~p,q!5@Hp2q
(1) ~kd!1~21!qHp1q

(1) ~kd!#

3@Hq2p
(1) ~kd!1~21!pHq1p

(1) ~kd!#. ~43!

Using the Watson transformation~18!, we replace in Eq.~42!
the two sums over the integersp,q by two contour integrals
over the complex numbersn1 ,n2

(
p50

1`

~21!pFp~ka!5
i

2EC1

F~n1 ,ka!

sin~pn1!
dn1 , ~44!

(
q50

1`

~21!qFq~ka!5
i

2EC2

F~n2 ,ka!

sin~pn2!
dn2 . ~45!

The contoursC1 andC2 encircle the real positive axis in th
clockwise sense in the corresponding complexn1 plane and
n2 plane. We then obtain

f252
1

16EC1

Sn1
21

sin~pn1! F EC2

Sn2
21

sin~pn2!
X~n1 ,n2!dn2Gdn1 ,

~46!

whereX(n1 ,n2), Sn1
, andSn2

are the analytic functions in

terpolatingX(p,q), Sp andSq . The functionX(n1 ,n2) has
useful symmetry properties required to evaluate the dou
integral ~46!,

X~6n1 ,6n2!5X~n1 ,n2!, ~47!
04662
le

moreoverX(n1 ,n2) reduces to

X~n1 ,n2![2eipn1Hn11n2

(1) ~kd!Hn12n2

(1) ~kd!

12eip(n11n2)@Hn11n2

(1) ~kd!#2. ~48!

Indeed, four terms appear in the expansion of Eq.~43!, but
the calculation of the double integral~46! over the complex
numbersn1 ,n2 only provides two different contributions.

In order to evaluate Eq.~46!, we independently proceed t
the modifications of theC2 contour in the complexn2 plane
and of theC1 contour in the complexn1 plane, following the
method described in Appendix A. We define

F~n1!5E
C2

Sn2
21

sin~pn2!
X~n1 ,n2!dn2 , ~49!

f252
1

16EC1

Sn1
21

sin~pn1!
F~n1!dn1 . ~50!

Using Eq. ~47! and according to Appendix A, the integra
~49! reads

F~n1!5Fg~n1!1Fd~n1!, ~51!

with

Fg~n1!52 i E
G2

Sn2
exp~2 ipn2!X~n1 ,n2!dn2 , ~52!

Fd~n1!54p(
nn

r nn

exp~ ipnn!

12exp~2ipnn!
X~n1 ,nn!. ~53!

HereG2 corresponds in the complexn2 plane to the contour
G of Fig. 24. Using Eq.~47!, F(n1) presents the necessa
property

F~2n1!5F~n1! ~54!

in order to apply the method described in Appendix A tof2.
Therefore, Eq.~50! reads

f25fg@F~n1!#1fd@F~n1!#, ~55!

with

fg@F~n1!#5
i

16EG1

Sn1
exp~2 ipn1!F~n1!dn1 , ~56!

fd@F~n1!#52
p

4 (
n15nn

r n1

exp~ ipn1!

12exp~2ipn1!
F~n1!.

~57!

G1 corresponds to the contourG of Fig. 24 in the complexn1
plane. Consequently, inserting Eqs.~51!–~53! in Eqs. ~56!
and ~57!, three different contributions are obtained forf2,

f25fd@Fd~n1!#12fg@Fd~n1!#1fg@Fg~n1!#. ~58!
9-4
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For the sake of simplicity, Eq.~58! can be written again suc
as

f2[fdd,212fdif,21fg,2 , ~59!

with

fdd,252
p

4 (
nn

r nn

exp~ ipnn!

12exp~2ipnn!

3F4p(
nn

r nn

exp~ ipnn!

12exp~2ipnn!
X~nn ,nn!G , ~60!

fdif,25
ip

4 (
nn

r nn

exp~ ipnn!

12exp~2ipnn!

3E
G1

Sn1
exp~2 ipn1!X~n1 ,nn!dn1 , ~61!

fg,25
1

16EG1

Sn1
exp~2 ipn1!

3F E
G2

Sn2
exp~2 ipn2!X~n1 ,n2!dn2Gdn1 . ~62!

Now we have to evaluate the previous contributions.

1. Purely diffractive contribution

fdd,2 is a purely diffractive contribution. Using Eq.~43!,
Eq. ~60! reads

fdd,25S 2 ip(
nn

r nn

exp~ ipnn!

12exp~2ipnn!

3@H0
(1)~kd!1exp~ ipnn!H2nn

(1) ~kd!# D 2

, ~63!

and from Eq.~22!, we directly obtain

fdd,25~ fdif,1!2. ~64!

2. Composite contribution

fdif,2 is a composite contribution, i.e., it contains a ge
metrical part and a diffractive one. After inserting relatio
~48! in Eq. ~61!, two different terms have to be evaluated

fdif,25fdif,2
I 1fdif,2

II , ~65!

with

fdif,2
I 5

ip

2 (
nn

r nn

exp~ ipnn!

12exp~2ipnn!

3E
G1

Sn1
Hnn1n1

(1) ~kd!Hn12nn

(1) ~kd!dn1 , ~66!
04662
-

fdif,2
II 5

ip

2 (
nn

r nn

exp~2ipnn!

12exp~2ipnn!

3E
G1

Sn1
@Hn11nn

(1) ~kd!#2dn1 . ~67!

fdif,2
I and fdif,2

II contain a diffractive part~the residue series!
and a geometrical part~the integration in the complexn1
plane! evaluated by applying the method of steepest desc
@22#. We obtain after calculations

fdif,2
I 52(

nn

r nn

expH 2innFp2arccosS a

d
D G J

12exp~2ipnn!

3R~0,ka!A ipa

k~Ad22a22a!Ad22a2

3exp@2ik~Ad22a22a!#, ~68!

fdif,2
II 52(

nn

r nn

expH 2innFp2arccosS a

d2aD G J
12exp~2ipnn!

3RS nn

a

d2a
,kaDA ipa

kdAd~d22a!

3exp@2ikAd~d22a!#. ~69!

3. Purely geometrical contribution

fg,2 given by Eq.~62! is a purely geometrical contribution
obtained applying twice the method of steepest descen
the variablesn1 and n2 ~see details in Appendix B!. We
obtain

fg,25fg,2
I 1fg,2

II , ~70!

with

fg,2
I 5 1

2 R~0,ka!2
a

2~d2a!
exp@2ik~d22a!#, ~71!

fg,2
II 5 1

2 R~0,ka!2
a

2Ad~d22a!
exp@2ik~d22a!#. ~72!

Finally using Eqs.~40!, ~59!, and~64!, the second cumu-
lant Q2(A) reads

Q2~A!52
1

2
@ fg,22~ fg,1!

2#1fdif,1fg,12fdif,2 , ~73!

with

fg,15fg,1
I 1fg,1

II ,

fdif,15fdif,1
I 1fdif,1

II ,
9-5
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fg,25fg,2
I 1fg,2

II ,

fdif,25fdif,2
I 1fdif,2

II .

The previous terms are given by the relations~37!, ~38!, ~27!,
~28!, and~68!–~72! and will be physically interpreted in Sec
IV. It should be noted that only purely geometrical contrib
tions and diffractive~or composite! contributions appear in
Q2(A). We refer to the termsfdif,q by diffractive ~or com-
posite! contributions composed by one diffractive part~resi-
due series! and (q21) geometrical parts~evaluated by the
method of steepest descent!.

C. The third term of the cumulant expansion

In this part we study the third cumulantQ3(A) given by
Eq. ~16!,

Q3~A!5 1
3 @ f32 3

2 f1f21 1
2 ~ f1!3#.

The evaluation off3 will provide new contributions, wherea
the terms (f1f2) and (f1)3 are directly deduced from the re
sults ofQ1(A) andQ2(A). Using Eq.~13!, the termf3 is of
the form
04662
-

f35Tr~A3!5 (
p50

`

(
q50

`

(
m50

`

(
m50

`

ApqAqmAmp . ~74!

Inserting the definition of the matrix elements~2!, f3 reads

f352 (
p50

`

(
q50

`

(
m50

`
gq

4
~21!p~Sp21!

gm

4

3~21!q~Sq21!
gp

4
~21!m~Sm21!Z~p,q,m!,

~75!

where

Z~p,q,m!5@Hp2q
(1) ~kd!1~21!qHp1q

(1) ~kd!#

3@Hq2m
(1) ~kd!1~21!mHq1m

(1) ~kd!#

3@Hm2p
(1) ~kd!1~21!pHm1p

(1) ~kd!#. ~76!

The three sums over the integersp,q,m are replaced, thanks
to the Watson transformation~18!, by three contour integrals
in the n1 ,n2 ,n3 complex planes, thus
f35
i

64EC1

Sn1
21

sin~pn1! F EC2

Sn2
21

sin~pn2! S EC3

Sn3
21

sin~pn3!
Z~n1 ,n2 ,n3!dn3D dn2Gdn1 , ~77!

andZ(n1 ,n2 ,n3) reduces to

Z~n1 ,n2 ,n3![4Hn12n2

(1) ~kd!Hn21n3

(1) ~kd!Hn31n1

(1) ~kd!eip(n11n3)14Hn11n2

(1) ~kd!Hn21n3

(1) ~kd!Hn31n1

(1) ~kd!eip(n11n21n3).

~78!

We define

Fn3
~n1 ,n2!5E

C3

Sn3
21

sin~pn3!
Z~n1 ,n2 ,n3!dn3 , ~79!

Fn2
~n1!5E

C2

Sn2
21

sin~pn2!
Fn3

~n1 ,n2!dn2 , ~80!

f35
i

64EC1

Sn1
21

sin~pn1!
Fn2

~n1!dn1 , ~81!

and with the following properties:

Z~6n1 ,6n2 ,6n3!5Z~n1 ,n2 ,n3!, ~82!

Fn3
~6n1 ,6n2!5Fn3

~n1 ,n2!, ~83!

Fn2
~6n1!5Fn2

~n1!, ~84!

the method described in Appendix A can be successively applied toFn3
(n1 ,n2), Fn2

(n1), and f3. After simplifications, we
obtain four different contributions,

f35fddd,313fgdd,313fdif,31fg,3 , ~85!
9-6
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with

fddd,35
ip

16
(
nn

r nn

exp~ ipnn!

12exp~2ipnn!
4p(

nn

r nn

exp~ ipnn!

12exp~2ipnn!
4p(

nn

r nn

exp~ ipnn!

12exp~2ipnn!
Z~nn ,nn ,nn!, ~86!

fgdd,35
1

4EG1

Sn1
exp~2 ipn1!Fp(

nn

r nn

exp~ ipnn!

12exp~2ipnn!
p(

nn

r nn

exp~ ipnn!

12exp~2ipnn!
Z~n1 ,nn ,nn!Gdn1 , ~87!

fdif,352
ip

16EG1

Sn1
exp~2 ipn1!F E

G2

Sn2
exp~2 ipn2!S (

nn

r nn

exp~ ipnn!

12exp~2ipnn!
Z~n1 ,n2 ,nn! D dn2Gdn1 , ~88!

fg,352
1

64EG1

Sn1
exp~2 ipn1!F E

G2

Sn2
exp~2 ipn2!S E

G3

Sn3
exp~2 ipn3!Z~n1 ,n2 ,n3!dn3D dn2Gdn1 . ~89!

The previous contributions have now to be evaluated.

1. Contributions deduced from previous results

fddd,3 is a purely diffractive contribution. Using relations~22! and ~76!, Eq. ~86! reads

fddd,35~ fdif,1!3. ~90!

fgdd,3 can be written from previous results. Indeed from Eqs.~22!, ~43!, ~61!, and~76!, we deduce

fgdd,35fdif,1fdif,2 . ~91!

2. Composite contribution

fdif,3 given by Eq.~88! is a composite contribution composed by a diffractive part and two geometrical parts evaluated
twice the method of steepest descent. We obtain

fdif,35fdif,3
I 1fdif,3

II , ~92!

where

fdif,3
I 52A2ip(

nn

r nn

expH 2innFp2arccosS n1,3
I 1nn

y
D G J

12exp~2ipnn!
$y@y22~nn1n1,3

I !2#%21/2

3R~n1,3
I ,ka!2exp@2iAy22~nn1n1,3

I !224iAx22~n1,3
I !21 iy #

3F S 1

Ay22~nn1n1,3
I !2

2
2

Ax22~n1,3
I !2

1
1

yD 2

2S 1

y
D 2G21/2

with n1,3
I 5nn

a

2d2a
, ~93!
046629-7
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fdif,3
II 52A2ip(

nn

r nn

expH 2innFp2arccosS n1,3
II 1nn

y
D G J

12exp~2ipnn!
$Ay22~2n1,3

II !2@y22~nn1n1,3
II !2#%21/2

3R~n1,3
II ,ka!2exp@2iAy22~nn1n1,3

II !224iAx22~n1,3
II !21 iAy22~2n1,3

II !2#

3F S 1

Ay22~nn1n1,3
II !2

2
2

Ax22~n1,3
II !2

1
1

Ay22~2n1,3
II !2D 2

2S 1

Ay22~2n1,3
II !2D 2G21/2

with n1,3
II 5nn

a

2d23a
.

~94!
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In the previous relations we have introduced the saddle p
notations which will be used later in the generalized form
las ~see the following section!. For instance,n1,3

I stands for
the first ~and the only one at this order! saddle point for a
third-order composite contribution of type I, andnm,q

II stands
for themth saddle point for aq-order composite contribution
of type II.

3. Purely geometrical contribution

The termfg,3 given by Eq.~89! is a purely geometrica
contribution. We successively apply the method of steep
descent three times, following the method used at the sec
order for the evaluation offg,2 ~see Appendix B!. Alterna-
tively, we can also apply the multiple integrals formula~C2!
given in Appendix C. The two methods lead to the sa
results,

fg,35fg,3
I 1fg,3

II , ~95!

with

fg,3
I 5 1

2 R~0,ka!3A a

2d

a

2d23a

3exp@3ik~d22a!#, ~96!

fg,3
II 5 1

2 R~0,ka!3A a

2~d22a!

a

2d2a

3exp@3ik~d22a!#. ~97!

Finally the third-order cumulantQ3(A) is given, after sim-
plification, by

Q3~A!5
1

3 F fg,32
3

2
fg,1fg,21

1

2
~ fg,1!

3G
2

1

2
@ fg,22~ fg,1!

2#fdif,12fg,1fdif,21fdif,3 . ~98!

As for Q2(A), only purely geometrical contributionsfg,q and
diffractive contributionsfdif,q are involved inQ3(A).

The main results obtained in this section are summari
in the two following points.
04662
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~i! All the contributions of the cumulant expansion up
the orderq53 have been determined.

~ii ! Each new cumulant provides only two purely ge
metrical contributions and two diffractive contributions,
mentioned in Ref.@9#.

We can note that some results have direct counterpar
Refs. @6,7# in the Dirichlet case, especially the purely ge
metrical contributions up to the third order and the first-ord
diffractive contribution.

III. GENERALIZATION

In the preceding section, we have extracted all the con
butions from the first three orders of the cumulant expans
We derive here the generalization of the purely geometr
and the diffractive~or composite! contributions that provide
scattering resonances. Consequently, we obtain
asymptotic approximation of detM , for any truncation order
q of the cumulant expansion~10!.

A. Purely geometrical contributions

To evaluateq-order geometrical contributions, the metho
of steepest descent isq times successively applied. Thus, w
generalize the procedure used for the first three ordersfg,1 ,
fg,2 , fg,3 . The corresponding generalized formula reads

fg,q5 1
2 ~Gq

I 1Gq
II !R~0,ka!qexp@qik~d22a!# for q>1,

~99!

where we have defined the following recurrence relationsl
stands for I or II!:

Gq
l 5gq

l Gq22
l , ~100!

gq
l 5

aD@gq22
l #

2~d2a!D@gq22
l #2aN@gq22

l #
. ~101!

The functionsN@z# and D@z#, respectively, correspond t
the numerator and to the denominator ofz. a is the radius of
the cylinders andd is the center-to-center separation d
tance. The initial coefficients are given by

G1
I 5A a

2d
, g3

I 5
a

2d23a
,

9-8
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G1
II5A a

2~d22a!
, g3

II5
a

2d2a
,

G2
I 5

a

2~d2a!
, g4

I 5
a~d2a!

2~d2a!22a2
,

G2
II5

a

2Ad~d22a!
, g4

II5
a

2~d2a!
. ~102!

Therefore, each purely geometricalq-order contribution is
given by formula~99!. For example, in the case ofq53, we
deduce from Eqs.~100! and ~102!

G3
I 5g3

I G1
I 5A a

2d

a

2d23a
,

G3
II5g3

IIG1
II5A a

2~d22a!

a

2d2a
, ~103!

thus we obtain with Eq.~99!

fg,35
1

2 SA a

2d

a

2d23a
1A a

2~d22a!

a

2d2aD
3R~0,ka!3exp@3ik~d22a!#. ~104!

This result is in good agreement with the one obtained fr
Eq. ~95! in Sec. II.

B. Composite contributions

The diffractive~or composite! contributionsfdif,q are com-
posed by one diffractive part and (q21) geometrical parts
Their evaluation is carried out applying (q21) times the
method of steepest descent. We give different formu
whetherq is even or odd, generalizing the results for all t
diffractive contributions.

First of all, we give some coefficient definitions that a
valid for q even or odd. We define the determinantCq

l of
order (q21) given by

Cq
l 5Ua1,q

l b1,q
l 0 0 ••• ••• 0

b1,q
l a2,q

l b2,q
l 0 ••• ••• 0

0 b2,q
l a3,q

l b3,q
l

••• ••• 0

0 0 b3,q
l a4,q

l
••• ••• 0

••• ••• ••• ••• ••• ••• •••

••• ••• ••• ••• ••• aq22,q
l bq22,q

l

0 0 0 0 ••• bq22,q
l aq21,q

l

U ,

~105!

which can be written as
04662
s

Cq
l 5 )

m51

q21

am,q
l

3F12 (
j 51

q22
~bj ,q

l !2

aj ,q
l aj 11,q

l S 12 (
k5 j 12

q22
~bk,q

l !2

ak,q
l ak11,q

l D G ,

~106!

with

am,q
l 5

1

Ay22~nm21,q
l 1nm,q

l !2
2

2

Ax22~nm,q
l !2

1
1

Ay22~nm,q
l 1nm11,q

l !2
, ~107!

bm,q
l 5

1

Ay22~nm,q
l 1nm11,q

l !2
. ~108!

Herex5ka, y5kd and the superscriptl denotes I or II. The
saddle pointsnm,q

l are defined at theq order by

nm,q
l 5nncm,q

l , ~109!

wherenn stands for the poles of theSn function. The coef-
ficientscm,q

l are given by the following recurrence relation

c1,q
l 5

aD@c1,q22
l #

2~d2a!D@c1,q22
l #2aN@c1,q22

l #
, ~110!

cm,q
l 5

aN@cm21,q22
l #

2~d2a!D@c1,q22
l #2aN@c1,q22

l #
,

for 1,m<p with q52p or q52p11. ~111!

At the q order,q saddle points are involved inCq
l but onlyp

of them are different in modulus.

1. Even truncation order qÄ2p

Diffractive contributions forq52p are given by the gen-
eralized formula

fdif,2p5fdif,2p
I 1fdif,2p

II , ~112!

where
9-9
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fdif,2p
l 52A2ip(

nn

r nn

exp„2inn$p2arccos@~n1,2p
l 1nn!/y#%…

12exp~2ipnn!

R~np,2p
l ,ka!

A2C2p
l

3
exp@2iAy22~np21,2p

l 1np,2p
l !222iAx22~np,2p

l !2#

Ay22~np21,2p
l 1np,2p

l !2

3 )
m51

p21 FR~nm,2p
l ,ka!2

exp@2iAy22~nm21,2p
l 1nm,2p

l !224iAx22~nm,2p
l !2#

Ay22~nm21,2p
l 1nm,2p

l !2 G , for p>1 with l 5I,II.

~113!

We use the following relations for the saddle points:

n2p2 j ,2p
l 5n j ,2p

l for 1< j <p21,

n0,2p
l 5nn ,

n2p,2p
l 5nn , ~114!

and the initial coefficients are

c1,2
I 50[

0

1
, c1,2

II 5
a

d2a
, ~115!

so we deduce with Eqs.~110! and ~111!

c1,4
I 5

a

2~d2a!
, c2,4

I 50,

c1,4
II 5

a~d2a!

2~d2a!22a2
, c2,4

II 5
a2

2~d2a!22a2
. ~116!

2. Odd truncation order qÄ2p¿1

Diffractive contributions forq52p11 are given by the generalized formula

fdif,2p115fdif,2p11
I 1fdif,2p11

II , ~117!

where

fdif,2p11
l 52A2ip(

nn

r nn

exp„2inn$p2arccos@~n1,2p11
l 1nn!/y#%…

12exp~2ipnn!

R~np,2p11
l ,ka!2

AC2p11
l

3
exp@2iAy22~np21,2p11

l 1np,2p11
l !224iAx22~np,2p11

l !21 iAy22~np,2p11
l 1np11,2p11

l !2#

AAy22~np,2p11
l 1np11,2p11

l !2@y22~np21,2p11
l 1np,2p11

l !2#

3 )
m51

p21 FR~nm,2p11
l ,ka!2

exp@2iAy22~nm21,2p11
l 1nm,2p11

l !224iAx22~nm,2p11
l !2#

Ay22~nm21,2p11
l 1nm,2p11

l !2 G , for p>1 with l 5I,II.

~118!
046629-10
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We use the following relations for the saddle points:

n2p112 j ,2p11
I 52n j ,2p11

I for 0< j <p,

n0,2p11
I 5nn , ~119!

n2p112 j ,2p11
II 5n j ,2p11

II for 0< j <p,

n0,2p11
II 5nn . ~120!

The initial coefficients are

c1,3
I 5

a

2d2a
, c1,3

II 5
a

2d23a
. ~121!

Equations~113! and~118! provide all the diffractive con-
tributionsfdif,q for any truncation orderq>2. The first-order
diffractive contributions are given in Sec. II.

C. Semiclassical approximation of det M

Generalizing previous results concerning the cumula
determined up to the third order@see Eqs.~39!, ~73!, and
~98!#, a q-order cumulant can be approximated by

Qq~A!.Qg,q1(
q

m51~21!m11Qg,q2mfdif,m ,

~122!

where fdif,m is the m-order composite contribution given b
Eqs. ~113! and ~118! and we defineQg,q as the ‘‘geometri-
cal’’ cumulants

Qg,051, ~123!

Qg,q5
1

q (
m51

q

~21!m11Qg,q2mfg,m for q>1, ~124!

and fg,m stands for them-order purely geometrical contribu
tion given by relation~99!. Finally, inserting Eq.~122! in Eq.
~10!, detM is approximated by

detM. (
q50

1` FQg,q1 (
m51

q

~21!m11Qg,q2mfdif,mG .

~125!

TABLE I. Generalization of the purely geometrical and diffra
tive contributions for the four irreducible representations of theC2v
symmetry group (q51,2,3, . . . ,̀ ).

A1 A2 B1 B2

fg,q
I 2(21)qfg,q

I 2fg,q
I (21)qfg,q

I

fg,q
II 1(21)qfg,q

II 1fg,q
II (21)qfg,q

II

fdif,q
I 2(21)qfdif,q

I 2fdif,q
I (21)qfdif,q

I

fdif,q
II 1(21)qfdif,q

II 1fdif,q
II (21)qfdif,q

II
04662
ts

As a result, the previous relation~125! permits one to
semiclassically evaluate detM for the A1 representation of
the C2v symmetry group for any truncation orderq.

D. Extension to the A2 ,B1 ,B2 irreducible representations

All the studies have been realized in the case of the1
representation of theC2v symmetry group. The method de
scribed in the case of the A1 representation of theC2v sym-
metry group can be easily extended to the three other i
ducible representations A2 , B1, and B2. The corresponding
results are deduced by introducing in the expression of deM
~125! the simple modifications reported in Table I. In th
section, we have given the generalized formulas that al
us to evaluate detM for any truncation orderq in the cumu-
lant expansion and for the four irreducible representation
C2v . Furthermore, all the scattering resonances of the
impenetrable cylinders system are determined and in
preted in the following section.

IV. NUMERICAL RESULTS AND PHYSICAL
INTERPRETATION OF RESONANCES

The aim of this section is to provide a physical interpr
tation for all the scattering resonances of the two-cylind
system as periodic paths. We use the expressions obtain
Secs. II and III for the A1 representation and we particular
focus on the exponential terms yielding the periodic or
interpretation. The contributions of the three other repres
tations A2 ,B1 ,B2 of C2v do not provide new geometrica
paths because the exponential terms are identical for all
representations. The periodic paths should be displaye
the fundamental domain of the scatterer~see Fig. 1! but they
are presented in the entire domain where they appear m
clearly.

A. Purely geometrical contributions

Using the results of Sec. II, the geometrical contributio
fg,q up to q53 are given by

fg,15
1

2 SA a

2d
1A a

2~d22a!
D

3R~0,ka!exp@ ik~d22a!#, ~126!

FIG. 1. Fundamental domain of theC2v symmetry group.

FIG. 2. Periodic orbit of the geometrical contributionsfg,q .
9-11
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fg,25
1

2 S a

2~d2a!
1

a

2Ad~d22a!
D

3R~0,ka!2exp@2ik~d22a!#, ~127!

fg,35
1

2 SA a

2d

a

2d23a
1A a

2~d22a!

a

2d2aD
3R~0,ka!3exp@3ik~d22a!#, ~128!

and from formula~99!, we can write

fg,q} exp@qik~d22a!# for q>1, ~129!

where the exponential term provides the periodic orbit int
pretation. These contributions are obviously associated w
the closed geometrical path described in Fig. 2. More p
cisely, q corresponds to the number of reflections on
cylinder in the fundamental domain.

The prefactors of the geometrical contributions involv
in Eqs. ~126!–~128! are the well-known stability factors
given in Ref.@7#. It is important to note that they are diffe
ent from those obtained following Ref.@26#, in the case of
acoustic scattering by two spheres, where the geomet
theory of diffraction involving a single scatterer is direct
applied to a system composed by two objects. This la
method only provides the first-order stability factors.

B. Composite contributions

From the results obtained in Secs. II and III, we can wr
that all composite contributionsfdif,q

l ( l 5I or II) are of the
form

fdif,q
l }exp~ ikt !exp~ innb!, ~130!

wheret denotes the geometrical path between the two cy
ders andb stands for the angle of the creeping section. T
reflection angles are directly deduced from the saddle-p
values. We display the interpretation of the diffractive co
tributions as periodic paths up to third order.

For instance, Fig. 3 displays the periodic orbit deduc
from the first-order diffractive contributionfdif,1

I given by Eq.
~27!. In this case, the geometrical path between the two
inders is t5d and the angle of the creeping section isb
5p. Figure 4 shows the path deduced from the other fi
order diffractive contributionfdif,1

II given by Eq.~28! with t
5Ad224a2 andb52p22 arccos(2a/d).

Figures 5, 6, 7, and 8 display the periodic orbits, resp
tively, deduced from the composite contributionsfdif,2

I , fdif,2
II ,

fdif,3
I , andfdif,3

II given by Eqs.~68!, ~69!, ~93!, and~94!. These
periodic orbits present creeping sections around the cylin

FIG. 3. First-order periodic orbit deduced fromfdif,1
I .
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FIG. 4. First-order periodic orbit deduced fromfdif,1
II .

FIG. 5. Second-order periodic orbit deduced fromfdif,2
I .

FIG. 6. Second-order periodic orbit deduced fromfdif,2
II .

FIG. 7. Third-order periodic orbit deduced fromfdif,3
I .

FIG. 8. Third-order periodic orbit deduced fromfdif,3
II .

FIG. 9. Limit periodic orbit of the composite contributionsfdif,q
l

( l 5I or II).
9-12
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and a number of reflections growing up with the orderq of
the composite contribution. In the limit of highq value, the
composite contributions go to the limit periodic path d
played in Fig. 9. Note that the periodic orbits deduced fr
the two first-order contributions~Figs. 2–6! already appear
in Refs.@6,7#.

It should be noted that all the composite contributio
contain the denominator@12exp(2ipnn)#. This term results
from the additional creeping paths, which correspond to s
tions of length 2ppa (p>1) around one cylinder, in addi
tion to the primary creeping paths~see also Refs.@6–9,24#!.

C. Exact versus asymptotic scattering resonances

We present here a comparison between the exact r
nances and the asymptotic resonances calculated from
semiclassical theory~see Sec. II!. Neumann, Dirichlet, and
impedance BC are investigated for the center-to-center
tanced56a in the complexka plane.

FIG. 10. Exact resonances (*) and first-order asymptotic re
nances~s! in the complexka plane. ~Neumann BC, separation
distanced56a, A1 representation.!

FIG. 11. Exact resonances (*) and second-order asymp
resonances~s! in the complexka plane.~Neumann BC, separation
distanced56a, A1 representation.!
04662
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The exact scattering resonances are the zeros of detM (a)

with a5A1,A2 ,B1 ,B2. Exact numerical calculations hav
been performed by replacing the infinite matricesM (a) by
the associated matrices of rankN, with

N5sup@8,„ka14~ka!1/311…#. ~131!

The above truncation orderN has been chosen from the nu
merical discussions of Young and Bertrand@27# and Nüssen-
zveig @28#, and it has been numerically tested. The scatter
resonances have been determined in the restricted do
0<Re(ka)<50 and 21.8< Im(ka)<0 using the ‘‘argu-
ment principle’’@29#.

The asymptotic formulas obtained in Sec. II are inser
in the truncated cumulant expansion~10! in order to calcu-
late the asymptotic resonances. The functionSn and the re-
flection coefficientR(n,ka) involved in the asymptotic cal-
culus are, respectively, given by Eqs.~7!, ~8!, and~34!–~36!

-

ic

FIG. 12. Exact resonances (*) and third-order asymptotic re
nances~s! in the complexka plane. ~Neumann BC, separation
distanced56a, A1 representation.!

FIG. 13. Exact resonances (•) and third-order asymptotic reso
nances (L) in the complexka plane. ~Neumann BC, separation
distanced56a, A2 representation.!
9-13
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according to the BC. The polesnn and the residuesr nn
of the

Sn function are given in Appendix D. We only take int
account the first pole of theSn function in the asymptotic
calculus. We can note that a comparison of the exact
semiclassical resonances in the Dirichlet case has been
formed in Refs.@9,10# using ‘‘the periodic orbit theory of
diffraction,’’ in a more restricted frequency domain. Simil
comparisons have been performed in Refs.@8,11# for the
three-disk system.

1. Neumann boundary condition

The exact resonances are compared to resonances
tained with our semiclassical approach for the first three
mulants in the case of Neumann BC. At the first, second,
third truncation orders, the expansion of detM reads

detM (1).Q0~A!1Q1~A!, ~132!

FIG. 14. Exact resonances (3) and third-order asymptotic reso
nances (h) in the complexka plane. ~Neumann BC, separation
distanced56a, B1 representation.!

FIG. 15. Exact resonances (1) and third-order asymptotic reso
nances (!) in the complexka plane. ~Neumann BC, separation
distanced56a, B2 representation.!
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detM (2).Q0~A!1Q1~A!1Q2~A!, ~133!

detM (3).Q0~A!1Q1~A!1Q2~A!1Q3~A!, ~134!

where Q0(A)51 and Q1(A), Q2(A), and Q3(A) are, re-
spectively, given by Eqs.~39!, ~73!, and~98!.

Figure 10 displays the comparison between exact
first-order asymptotic resonances@the zeros of Eq.~132!#.
We observe a good agreement for the resonances lying on
line close to the realka axis. They are associated with th
first-order geometrical contributionfg,1 presented in Fig. 2.
The first-order approximation provides a second asympt
line whose resonances do not match the exact ones. The
associated with the purely diffractive contributionfdif,1 plot-
ted in Figs. 3 and 4. It should also be noted that the sec
asymptotic line is located deeper inside theka plane and
contains fewer resonances than the exact second line.
first approximation of detM does not provide the complet
location of exact resonances in the studied region. We m
therefore take into account the second cumulant.

Figure 11 displays a comparison between exact
second-order asymptotic resonances@the zeros of Eq.~133!#.
The first asymptotic line still matches the exact data. T
second resonances line is well approximated up to Re(ka)
.25. The corresponding asymptotic resonances are as
ated with the diffractive contributionsfdif,1 , fdif,2 ~Figs. 3–6!,
and with the second-order geometrical contributionfg,2 ~Fig.
2!. A third exact line is not displayed by the second-ord
expansion of detM . We therefore take into account the third
order cumulant.

Figure 12 displays comparison between exact and th
order asymptotic resonances@the zeros of Eq.~134!#. A very
good agreement is obtained in the whole studied dom
Nevertheless, a weak discrepancy is observed in the re
Re(ka)&8 and Im(ka)&21.2 where the asymptotic expan
sions used are not very efficient. Moreover, the second p
of the Sn function should be taken into account. The thi
line, coming from Re(ka).8, Im(ka).21.7, and joining

FIG. 16. Exact resonances (*) and third-order asymptotic re
nances~s! in the complexka plane.~Dirichlet BC, separation dis-
tanced56a, A1 representation.!
9-14
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MULTIPLE SCATTERING BY TWO IMPENETRABLE . . . PHYSICAL REVIEW E 66, 046629 ~2002!
the second line near Re(ka).25, Im(ka).20.9, is associ-
ated with the third-order geometrical contributionfg,3 ~Fig.
2! and with the diffractive contributionfdif,3 ~Figs. 7 and 8!.

Similar results are obtained for the three other irreduci
representations A2 , B1 , B2 in the case of the Neumann B
~see Figs. 13–15!. The third-order asymptotic resonanc
match the exact ones except in the small region of high ne
tive ka imaginary part and lowka real part.

2. Dirichlet and impedance boundary conditions

The exact resonances are compared to those obtained
our semiclassical approach for the third-order expansion
detM ~134! in the cases of Dirichlet and impedance B
Figures 16 and 17, respectively display the results for Diri
let and for impedance BC with the reduced impedancez5
25. A good agreement is observed. For the Dirichlet ca
Fig. 16 can be compared with Fig. 2 of Ref.@9#.

D. Additional periodic orbits in the case
of a particular impedance

As mentioned by Keller and Karal@30#, in order for the
surface to support a surface wave, it is necessary thatz sat-
isfy the conditions

Re~z!>0,Im~z!.0. ~135!

FIG. 17. Exact resonances~s! and third-order asymptotic reso
nances (•) in the complexka plane.~Impedance BC,z525, sepa-
ration distanced56a, A1 representation.!

FIG. 18. Excitation of a surface wave on a circular cylinder. T
angleu between the incident complex ray and the exterior norman
is defined by Eq.~138!.
04662
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FIG. 19. First-order periodic orbit deduced fromfdif,1S
I .

FIG. 20. First-order periodic orbit deduced fromfdif,1S
II .

FIG. 21. Second-order periodic orbit deduced fromfdif,2S
I .

FIG. 22. Second-order periodic orbit deduced fromfdif,2S
II .

FIG. 23. Exact resonances (*) and second-order asympt
resonances (h) in the complexka plane.~Impedance BC,z50.2
10.3i , separation distanced56a, A1 representation.!
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In this particular case, a new polenS appears on the right
hand side ofka (unSu.ka) in the first quadrant of the com
plex n plane. In order to take into account the contributio
due to this supplementary polenS , it suffices to make the
substitution

(
nn

→ (
nn1nS

~136!

that corresponds to

fdif,q
l →fdif,q

l 1fdif,qS
l , for q>1 with l 5I,II ~137!

in the generalized formulas given previously for the comp
ite contributions~see Sec. III!. The characteristic impedanc
z is related to the complex angleu, the propagation velocity
c in the medium, and the phase velocityc1 of the wave along
the cylinder surface~see Fig. 18! by

cosu52z21,sinu5A12z225
c

c1
. ~138!

Using the appropriate Debye asymptotic expansions
the approximation

nS;ka sinu, ~139!

the residuer nS
at the polenS reads

r nS
;22ika

cos2u

sinu
exp~22ika cosu!exp@ inS~p22u!#.

~140!
m

s
fa
a
e

04662
s

-

d

Inserting Eqs.~139!, and~140! in Eqs.~24! and~25!, taking
into account the substitution~136!, and following the method
described in Sec. II A 1, we then obtain two new first-ord
composite contributions associated with the polenS ,

fdif,1S
I 522ka

cos2u

sinu
A2p

ikd

exp@2inS~p2u!#

12exp@2ipnS#

3exp@ ik~d22a cosu!#, ~141!

fdif,1S
II 522ka

cos2u

sinu
A 2p

ikAd22~2a sinu!2

3
exp@2inS~p2u1b!#

12exp@2ipnS#

3exp$ ik@Ad22~2a sinu!222a cosu#%

with b5arcsin
2a sinu

d
. ~142!

Similarly, inserting Eqs.~139! and ~140! in Eqs. ~66! and
~67! and taking into account the substitution~136!, we then
obtain two new second-order composite contributions as
ciated with the polenS ,
fdif,2S
I 522ka

cos2u

sinu
A pa

ikAd22~a sinu!2@Ad22~a sinu!22a#
R~0,ka!

exp@2inS~p2u1g!#

12exp@2ipnS#

3exp$2ik@Ad22~a sinu!22a~11cosu!#%, with g5arcsin
a sinu

d
, ~143!

fdif,2S
II 522ka

cos2u

sinu
A pa

ikdA~d2a!22~a sinu!2
RS nS

a

d2a
,kaD exp@2inS~p2u1f!#

12exp@2ipnS#

3exp$2ik@A~d2a!22~a sinu!22a cosu#%, with f5arcsin
a sinu

d2a
. ~144!
ace

and

e

The complex periodic orbits associated with these four co
posite contributions~141!–~144! are displayed in Figs. 19–
22.

All the composite periodic orbits obtained here in the ca
of impenetrable objects are associated with external sur
waves. We can note that the periodic orbits involving
excitation angle also exist in the case of scattering by p
-

e
ce
n
n-

etrable cylinders. They correspond then to internal surf
waves associated with Wait poles~mixed or fluid BC! @31#,
Rayleigh, and Whispering Gallery poles~scattering by solid
elastic cylinders immersed in a fluid! @32#.

Figure 23 displays a comparison between exact
second-order asymptotic resonances@the zeros of Eq.~133!
including the substitution~137!# in the case of the impedanc
9-16
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MULTIPLE SCATTERING BY TWO IMPENETRABLE . . . PHYSICAL REVIEW E 66, 046629 ~2002!
BC with z50.210.3i . The two resonances lines located
the region21.2<Im(ka)<0 have been previously inter
preted and they are associated with the contributionsfg,1 ,
fg,2 , fdif,1 , and fdif,2 ~see Figs. 2–6!. A new resonances line
located deeper inside theka plane and extended to Re(ka)
.2.5 and Im(ka).21.4, is associated with the new com
posite contributionsfdif,1S

I , fdif,1S
II , fdif,2S

I , and fdif,2S
II ~Figs.

19–22!. A good agreement is obtained in the studied doma
except in the region Re(ka)&2 where the asymptotic expan
sions are not very efficient.

V. CONCLUSION

In this paper, we have entirely solved the two-cylinde
scattering problem for Dirichlet, Neumann, and impedan
boundary conditions. All the scattering resonances for
first three terms of the cumulant expansion have been
tracted. Generalized formulas have been derived at any t
cation order for all the contributions that are purely ge
metrical or composite. We have then obtained a semiclass
approximation of the characteristic determinant for each
reducible representation of theC2v symmetry group. All the
contributions have been interpreted in terms of periodic
bits. Moreover, our semiclassical approach provides sca
ing resonances in excellent agreement with the exact res
We can then postulate that, in the scalar case, scatterin
waves and particles by two identical, impenetrable cylind
is a canonical problem.

The semiclassical formalism developed in this paper
actually extended to the scattering problem by two p
etrable cylinders~scattering of a transverse electric wave
dielectric cylinders in electromagnetism, fluid BC in acou
tics, or mixed BC in quantum physics!. In this case, the pole
associated with the internal waves~or with the interior po-
tential! must be taken into account. The main difficul
comes from the slow convergence of the Debye series ex
sion introduced to evaluate the geometrical contributio
~each incident ray gives rise to an infinite series of multi
internal reflections!. It should be noted that multiple scatte
ing problems by penetrable objects have never been s
classically treated.
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FIG. 24. Contour deformation in the complexn plane where
C5C11C2 andG5G11G2 .
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APPENDIX A: CONTOUR DEFORMATION
IN THE COMPLEX PLANE

We consider the integral

F~n,ka!5E
C

Sn21

sin~pn!
H~n,ka!dn, ~A1!

where the contourC encircles the real positive axis in th
clockwise sense~see Fig. 24!. The functionH(n,ka) must
satisfy the symmetry property

H~2n,ka!5H~n,ka!, ~A2!

and the functionSn is given by Eq.~6!, Eq. ~7!, or Eq. ~8!
according to the boundary condition. Let us write

C5C11C2 , ~A3!

and introduce the expansions

1

sin~pn!
522i (

p50

1`

eipn(2p11) for Im~n!.0, ~A4!

1

sin~pn!
52i (

p50

1`

e2 ipn(2p11) for Im~n!,0, ~A5!

respectively, onC1 andC2 , so

F~n,ka!522i (
p50

1` E
C1

~Sn21!ein(2p11)pH~n,ka!dn

12i (
p50

1` E
C2

~Sn21!e2 in(2p11)pH~n,ka!dn.

~A6!

The residue theorem permits one to write

E
C1

I1dn1E
C`

I1dn1E
G1

I1dn52ip residue ~I1! un5nn
,

~A7!

E
C2

I2dn1E
G2

I2dn1E
C`

I2dn50, ~A8!

whereI1 andI2, respectively, denote the integrands of t
first integral and of the second one in Eq.~A6!. nn are the
poles of theSn function in the complexn plane. They are
symmetrically distributed with respect to the origin, so w
have to only consider them in the right half-plane locat
close to the curveh1. This curveh1 cuts the realn axis at
n5ka, at an angle ofp/3. The tangent to this curve tends
the vertical direction forunu→` ~see Fig. 24!. This poles
distribution is valid in the three cases treated in the pap
i.e., for the Dirichlet, Neumann, and impedance bound
conditions. The dominant behavior in Eq.~A6! is dictated by
(Sn21)eipn in the first integral and by (Sn21)e2 ipn in the
second one. Following the methods of Nu¨ssenzveig@33#, we
obtain
9-17
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E
C`

~Sn21!eipnH~n,ka!dn→0 for Im~n!.0,

~A9!

E
C`

~Sn21!e2 ipnH~n,ka!dn→0 for Im~n!,0,

~A10!

as unu→`, so using Eqs.~A7! and ~A8!, Eq. ~A6! reads

F~n,ka!52i (
p50

1` E
G1

~Sn21!eipn(2p11)H~n,ka!dn

14p (
p50

1`

(
nn

r nn
eipnn(2p11)H~nn ,ka!

22i (
p50

1` E
G2

~Sn21!e2 ipn(2p11)H~n,ka!dn,

~A11!

where r nn
is the residue of theSn function at the polesn

5nn . We change the sign ofn in the second integral ove
the contourG2 . Using the symmetry properties~A2! and

S2n5e22ipnSn , ~A12!

Eq. ~A11! becomes

F~n,ka!522i E
G1

Sne2 ipnH~n,ka!dn

14p (
p50

1`

(
nn

r nn
eipnn(2p11)H~nn ,ka!.

~A13!

Finally, after a last contour modification in Eq.~A13!, an
integral of the form~A1! with the symmetry property~A2! is
written as a sum of a geometrical contributionFg(n,ka) and
a residue-series contributionFd(n,ka),

F~n,ka!5Fg~n,ka!1Fd~n,ka!, ~A14!

with

Fg~n,ka!52 i E
G
Sne2 ipnH~n,ka!dn, ~A15!

Fd~n,ka!54p(
nn

r nn

eipnn

12e2ipnn
H~nn ,ka!. ~A16!
04662
The contourG5G11G2 displayed in Fig. 24 is chosen in
order to apply the method of steepest descent.

APPENDIX B: THE PURELY GEOMETRICAL
CONTRIBUTIONS OF THE SECOND ORDER

We consider here the purely geometrical contributio
given by Eq.~62!, extracted from the second cumulant,

fg,25
1

16EG1

Sn1
e2 ipn1F E

G2

Sn2
e2 ipn2X~n1 ,n2!dn2Gdn1 .

ReplacingX(n1 ,n2) by relation ~48!, two different terms
have to be evaluated

fg,25fg,2
I 1fg,2

II , ~B1!

with

fg,2
I 5

1

8EG1

Sn1F EG2

Sn2
e2 ipn2

3Hn21n1

(1) ~kd!Hn12n2

(1) ~kd!dn2Gdn1 , ~B2!

fg,2
II 5

1

8EG1

Sn1F EG2

Sn2
@Hn11n2

(1) ~kd!#2dn2Gdn1 . ~B3!

Equations~B3! and ~B3! are composed by an integratio
with respect to the variablen1, which contains another inte
gration with respect to the variablen2. Thus, we succes
sively twice apply the method of steepest descent: the
time to perform then2 integration and the second one
perform then1 integration. We present the detailed resoluti
of fg,2

I and the main results concerningfg,2
II . The notations

x5ka andy5kd are used.

1. Evaluation of fg,2
I

a. Integration with respect ton2

In Eq. ~B2!, we define the inner integral

Fn2
5E

G2

Sn2
e2 ipn2Hn21n1

(1) ~kd!Hn12n2

(1) ~kd!dn2 . ~B4!

Using the Debye asymptotic expansion for the Hankel fu
tions ~32! and forSn2

~33!, Fn2
is approximated by
9-18
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Fn2
;2

2

pEG2

R~n2 ,ka!

@y22~n11n2!2#1/4@y22~n12n2!2#1/4
expF22iAx22n2

212in2arccos
n2

x
2 ipn2G

3expF iAy22~n11n2!22 i ~n11n2!arccos
n11n2

y
1 iAy22~n12n2!22 i ~n12n2!arccos

n12n2

y Gdn2 . ~B5!

We define

f ~n2!52
2

p

R~n2 ,ka!

@y22~n11n2!2#1/4@y22~n12n2!2#1/4
, ~B6!

g~n2!5
i

x F22Ax22n2
212n2arccos

n2

x
2pn21Ay22~n11n2!22~n11n2!arccos

n11n2

y

1Ay22~n12n2!22~n12n2!arccos
n12n2

y G . ~B7!

We calculate the first and second derivatives ofg(n2) with respect ton2 ~labeled byd and dd),

gd~n2!5
]g~n2!

]n2
5

i

x F2arccos
n2

x
2arccos

n11n2

y
1arccos

n12n2

y
2pG , ~B8!

gdd~n2!5
]2g~n2!

]n2
2

5
i

x F2
2

Ax22n2
2

1
1

Ay22~n11n2!2
1

1

Ay22~n12n2!2G . ~B9!
The saddle pointn2 is determined by

gd~n2!50⇔n250. ~B10!

Fn2
is approximated by~see Refs.@22,23#!

Fn2
.A22p f ~n2!

exp@xg~n2!#

@xgdd~n2!#1/2
, ~B11!

so the integration with respect ton2 gives the result

Fn2
522R~0,ka!A x

ip~Ay22n1
22x!Ay22n1

2

3expF2iAy22n1
222in1arccos

n1

y
22ixG .

~B12!

b. Integration with respect ton1

Equation~B2! can be written as
04662
fg,2
I 5

1

8EG1

Sn1
Fn2

dn1 ~B13!

and we replaceFn2
by Eq. ~B12! and Sn2

by its Debye

asymptotic expansion~33!, so

fg,2
I ;

1

4
E

G1

R~0,ka!R~n1 ,ka!

3A ix

p~Ay22n1
22x!Ay22n1

2

3expF22ix22iAx22n1
212in1arccos

n1

x
G

3expF2iAy22n1
222in1arccos

n1

y
Gdn1 . ~B14!

We define
9-19
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f ~n1!5
1

4
R~0,ka!R~n1 ,ka!

3A ix

p~Ay22n1
22x!Ay22n1

2
, ~B15!

g~n1!5
2i

x F2x2Ax22n1
21n1arccos

n1

x
1Ay22n1

2

2n1arccos
n1

y G . ~B16!

We calculate the first and second derivatives ofg(n1) with
respect ton1 labeled by8 and 9. The saddle point is deter
mined by

g8~n1!50⇔n150. ~B17!

fg,2
I is approximated by

fg,2
I .A22p f ~n1!

exp@xg~n1!#

@xg9~n1!#1/2
. ~B18!

Finally the first purely geometrical contribution of the se
ond order is

fg,2
I 5 1

2 R~0,ka!2
a

2~d2a!
exp@2ik~d22a!#. ~B19!

2. Evaluation of fg,2
II

The second geometrical contribution is given by Eq.~B3!.
We apply the same procedure as forfg,2

I . We call

Fn2
5E

G2

Sn2
@Hn11n2

(1) ~kd!#2dn2 , ~B20!

and the integration with respect ton2 gives us

Fn2
52

2

Aip
R~n2,ka!

3
1

Ay22~n11n2!2A 1

Ax22n2
2

2
1

Ay22~n11n2!2

3exp@22iAx22n2
212iAy22~n11n2!2#
04662
expF22in1arccos
n11n2

y
G , ~B21!

with

n25n1

a

d2a
. ~B22!

Afterwards the integration with respect ton1 of the expres-
sion

fg,2
II 5

1

8EG1

Sn1
Fn2

dn1 ~B23!

is carried out taking into account then1 dependence ofn2.
Finally, the second purely geometrical contribution of t
second order reads

fg,2
II 5 1

2 R~0,ka!2
a

2Ad~d22a!
exp@2ik~d22a!#.

~B24!

APPENDIX C: MULTIPLE INTEGRALS

In this appendix, the real multiple integrals formula, giv
by Felsen@22#, is extended to the case of integration in t
complex plane. Let us consider the multiple integration w
respect toq complex variables (n1 ,n2 , . . . ,nq) for q>1,

I q5E E •••E f ~n1 ,n2 , . . . ,nq!

3exp@xg~n1 ,n2 , . . . ,nq!#dn1dn2•••dnq , ~C1!

which can be approximated by

I q.S 2p

x D q/2

f ~n1,n2, . . . ,nq!
exp@xg~n1,n2, . . . ,nq!#

@~21!qDq#1/2
,

~C2!

where the saddle pointsn i are the roots of

]g~n1 ,n2 , . . . ,nq!

]n i
u(n i5n i )

50. ~C3!

Dq is the followingq determinant:
9-20



Dq5*
]2g

]n1
2

]2g

]n1]n2
0 ••• 0

]2g

]n1]nq

]2g

]n2]n1

]2g

]n2
2

]2g

]n2]n3
••• 0 0

0
]2g

]n3]n2

]2g

]n3
2

••• 0 0

A A A � ••• •••

0 0 0 •••

]2g

]nq21
2

]2g

]nq21]nq

]2g ]2g ]2g

* ~C4!

ely on
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]nq]n1
0 0 •••

]nq]nq21 ]nq
2

defined forn i5n i( i 51,2,3, . . . ,q). It should be noted that forq51, Eq.~C2! is equivalent to the formula~B11! used in the
case of simple integration.

The resolution of multiple integrals such asfg,2
II has been performed using the method of steepest descent successiv

n2 and afterwards onn1 ~see Appendix B!. We apply here the multiple integral formula~C2! with q52 to the contributionfg,2
II

given by Eq.~B3!. Using the Debye asymptotic expansions~32! and ~33!, fg,2
II reads

fg,2
II ;2

1

4
E

G1

E
G2

R~n1 ,ka!R~n2 ,ka!

ipAy22~n11n2!2
expF22iAx22n1

212in1arccos
n1

x
22iAx22n2

212in2arccos
n2

x
G

3expF2iAy22~n11n2!222i ~n11n2!arccos
n11n2

y
Gdn1dn2 . ~C5!
We define

f ~n1 ,n2!52
1

4

R~n1 ,ka!R~n2 ,ka!

ipAy22~n11n2!2
, ~C6!

g~n1 ,n2!5
i

x F22Ax22n1
212n1arccos

n1

x
22Ax22n2

2

12n2arccos
n2

x
12Ay22~n11n2!2

22~n11n2!arccos
n11n2

y G . ~C7!

We evaluate the first and second derivatives ofg(n1 ,n2)
with respect ton1 andn2,

]g

]n1
5

2i

x Farccos
n1

x
2arccos

n11n2

y G , ~C8!

]g

]n2
5

2i

x Farccos
n2

x
2arccos

n11n2

y G , ~C9!
04662
]2g

]n1
2

5
2i

x F2
1

Ax22n1
2

1
1

Ay22~n11n2!2G , ~C10!

]2g

]n1]n2

5
]2g~n1 ,n2!

]n2]n1

5
2i

x F 1

Ay22~n11n2!2G ,

~C11!

]2g

]n2
2

5
2i

x F2
1

Ax22n2
2

1
1

Ay22~n11n2!2G , ~C12!

andn1, n2 are determined as follows:

]g

]n1
u(n15n1)50⇔n15n2

a

d2a
, ~C13!

]g

]n2
u(n25n2)50⇔n25n1

a

d2a
. ~C14!

We obtain

n15n250 ~C15!
9-21
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and

g~n1,n2!5
2i

x
~y22x!. ~C16!

The second-order determinant reads

D25U ]2g

]n1
2

]2g

]n1]n2

]2g

]n2]n1

]2g

]n2
2

U
(n1,n2)

5S 2i

x D 2S y22x

xy D S 1

xD .

~C17!

Finally, fg,2
II is given by formula~C2! with q52,

fg,2
II .

2p

x
f ~n1,n2!

exp@xg~n1,n2!#

@D2#1/2
, ~C18!

therefore

fg,2
II 5 1

2 R~0,ka!2
a

2Ad~d22a!
exp@2ik~d22a!#.

~C19!

The result is the same as the one obtained in Eq.~B24! of
Appendix B by applying twice the method of steepest d
scent. Consequently, we consider that the formula~C2! can
be applied for any truncation orderq.

APPENDIX D: ASYMPTOTIC FORMULAS

In this appendix, we give the asymptotic formulas, used
Sec. V, for the polesnn and the residuesr nn

of the Sn func-
tion ~see, for example, Refs.@21,24,33#!.

1. Dirichlet boundary conditions

The poles of theSn function are the zeros of Hn
(1)(ka) and

are given by

nn5ka2mneip/3S ka

2 D 1/3

1
mn

2

60
e2ip/3S ka

2 D 21/3

. ~D1!

The residue of theSn function at the polesn5nn is approxi-
mated by

r nn
;

exp~2 ip/6!

2p Ai 8~mn!2 S ka

2 D 1/3

, ~D2!

where mn (nPN* ) is the nth zero of the Airy function
Ai( x).

2. Neumann boundary conditions

The poles of theSn function are the zeros of Hn
(1)8(ka)

and are given by
04662
-

n

nn5ka2hneip/3S ka

2 D 1/3

1S hn
2

60
2

1

10hn
De2ip/3S ka

2 D 21/3

.

~D3!

The residue of theSn function at the polesn5nn is approxi-
mated by

r nn
;2

exp~2 ip/6!

2phnAi ~hn!2 S ka

2 D 1/3

, ~D4!

wherehn (nPN* ) is the nth zero of the derivative of the
Airy function Ai8(x).

3. Impedance boundary conditions

Here, the poles of theSn function are the zeros o

@zHn
(1)8(ka)1 iHn

(1)(ka)# and are given by two differen
asymptotic formulas whetheruzu.1 or uzu,1.

For uzu.1,

nn5ka2 i
14z2~hn

321!21

140z3hn
3

2
11190z2

90z3hn

eip/6S ka

2 D 2/3

1
8~3z221!hn

3215

48z4hn
6 S ka

2 D
2

312hn
31280z4hn

6114z2~312hn
3!

280z4hn
5

eip/3S ka

2 D 1/3

1
7z2~hn

326!23

420z2hn

e2ip/3S ka

2 D 21/3

. ~D5!

For uzu,1,

nn5ka2 i z2mneip/3S ka

2 D 1/3

1
mn

2

60
e2ip/3S ka

2 D 21/3

2
2z32z

6
mne5ip/6S ka

2 D 22/3

2
3z2

20 S ka

2 D 21

. ~D6!

These two asymptotic formulas~D5! and~D6!, providing the
location of the polesnn for the impedance BC, have bee
established following the method of Streifer and Kodis@34#.
The residue of theSn function at the polesn5nn is approxi-
mated by~for uzu.1 or uzu,1)

r nn
;

exp~2 ip/6!

2p@Ai 8~z!22z Ai 8~z!2#
S ka

2 D 1/3

, ~D7!

wherez is defined by

z5S ka

2 D 21/3

e2 ip/3~ka2nn!. ~D8!
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